A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation

نویسندگان

  • Horacio D. Espinosa
  • Pablo D. Zavattieri
چکیده

A model is presented to analyze material microstructures subjected to quasi-static and dynamic loading. A representative volume element (RVE) composed of a set of grains is analyzed with special consideration to the size distribution, morphology, chemical phases, and presence and location of initial defects. Stochastic effects are considered in relation to grain boundary strength and toughness. Thermo-mechanical coupling is included in the model so that the evolution of stress induced microcracking, from the material fabrication stage, can be captured. Intergranular cracking is modeled by means of interface cohesive laws motivated by the physics of breaking of atomic bonds or grain boundary sliding by atomic diffusion. Several cohesive laws are presented and their advantages in numerical simulations are discussed. In particular, cohesive laws simulating grain boundary cracking and sliding, or shearing, are proposed. The equations governing the problem, as well as their computer implementation, are presented with special emphasis on selection of cohesive law parameters and time step used in the integration procedure. This feature is very important to avoid spurious effects, such as the addition of artificial flexibility in the computational cell. We illustrate this feature through simulations of alumina microstructures reported in part II of this work. A technique for quantifying microcrack density, which can be used in the formulation of continuum micromechanical models, is addressed in this analysis. The density is assessed spatially and temporally to account for damage anisotropy and evolution. Although this feature has not been fully exploited yet, with the continuous development of cheaper and more powerful parallel computers, the model is expected to be particularly relevant to those interested in developing new heterogeneous materials and their constitutive modeling. Stochastic effects and other material design variables, although difficult and expensive to obtain experimentally, will be easily assessed numerically by Monte Carlo grain level simulations. In particular, extension to three-dimensional simulations of RVEs will become feasible. 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples

Numerical aspects of the grain level micromechanical model presented in part I are discussed in this study. They include, an examination of solution convergence in the context of cohesive elements used as an approach to model crack initiation and propagation; performance of parametric studies to assess the role of grain boundary strength and toughness, and their stochasticity, on damage initiat...

متن کامل

بررسی توزیع انرژی ذخیره شده تغییر شکل در داخل پلی‌کریستال فلزی با استفاده از تئوری کریستال پلاستیسیته بر مبنای چگالی نابجایی

The stored deformation energy in the dislocation structures in a polycrystalline metal can provide a sufficient  driving force to move grain boundaries during annealing. In this paper, a thermodynamically-consistent three-dimensional, finite-strain and dislocation density-based crystal viscoplasticity constitutive theory has been developed to describe the distribution of stored energy and dislo...

متن کامل

FEM Implementation of the Coupled Elastoplastic/Damage Model: Failure Prediction of Fiber Reinforced Polymers (FRPs) Composites

The coupled damage/plasticity model for meso-level which is ply-level in case of Uni-Directional (UD) Fiber Reinforced Polymers (FRPs) is implemented. The mathematical formulations, particularly the plasticity part, are discussed in a comprehensive manner. The plastic potential is defined in effective stress space and the damage evolution is based on the theory of irreversible thermodynamics. T...

متن کامل

A Multiple Adaptive Neuro-Fuzzy Inference System for Predicting ERP Implementation Success

The implementation of modern ERP solutions has introduced tremendous opportunities as well as challenges into the realm of intensely competent businesses. The ERP implementation phase is a very costly and time-consuming process. The failure of the implementation may result in the entire business to fail or to become incompetent. This fact along with the complexity of data streams has led ...

متن کامل

Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene

Understanding the grain size-dependent failure behavior of polycrystalline graphene is important for its applications both structurally and functionally. Here we perform molecular dynamics simulations to study the failure behavior of polycrystalline graphene by varying both grain size and distribution. We show that polycrystalline graphene fails in a brittle mode and grain boundary junctions se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002